新闻资讯
通过科学和创新,我们帮助各行各业的客户满足当今和未来社会发展的需求。
水分对锂电池的影响以及控制
本站 2020-04-26 次浏览
水分的影响
固体电解质界面(Solid-ElectrolyteInterface,简称SEI)膜是一层选择性透过膜,能使Li+自由透过,而电解液分子不能透过。电解液的组成和痕量的添加剂对SEI膜形成的电位、致密程度、电池不可逆容量损失、电池内阻等有显著的影响。水作为电解液中一种痕量组分,对锂离子电池SEI膜的形成和电池性能有一定的影响。主要表现为电池容量变小,放电时间变短,内阻增大,循环容量衰减,电池膨胀等现象,因此,在锂离子电池的制作过程中,必须严格控制环境的湿度和正负极材料、电解液的含水量。
水分对放电容量的影响
电池首次放电容量随电池中水分的增加而减小。在锂源恒定的条件下,电池首次放电容量的变化主要由2个主要因素制约。
1、SEI膜的形成消耗部分Li十,造成不可逆容量损失,单电子还原过程生成的烷基碳酸锂还可以与电解液中的痕量水发生反应,2ROC02Li+H2O→LieC03+C02+2ROH,当生成C02后,在低电位下的负极表面,有新的化学反应发生2C02+2Li++2e→LieC03+CO。
2、SEI膜形成以后,在仍然有H2O存在的条件下,H2O会促使电解液中LiPF6的分解,使电池放电时间缩短,LiPF6→LiF+PFs,PFs+H2O→POF3+2HF。
水分对锂电池内阻的影响
随着电池水分的增加,内阻呈上升的趋势。产生电池内阻差异的主要因素有如下2个方面。
1、SEI膜的差异导致电池内阻的差异。在电解液溶剂体系中,痕量的水能够形成以Li2CO3为主、稳定性好、均匀致密的SEI膜,其内阻较小。
2、水分含量多于体系形成SEI膜的所需含量时,在SEI膜表面生成POF3和LiF沉淀,导致电池内阻增加。
水分对电池循环容量衰减的影响
电池容量衰减随水分含量增加而逐渐减小。这与SEI膜的致密程度和均匀性有关。当SEI膜均匀致密时,电解液溶剂不易嵌人到负极中,占据Li十嵌空位,因此容量衰减很少。与此相反,当SEI膜的局部不致密、不均匀时,Li十嵌空位被电解液溶剂占据相对较容易。LieC03是形成均匀致密SEI膜最主要的组分,电解液溶剂体系中,当水分含量过量时,会导致SEI膜的局部不致密、不均匀,因此容量衰减增加。
电池会膨胀主要是因为SEI膜生成后水的存在使LiPF6分解生成HF气体。
水分对锂离子电池影响巨大,主要会造成以下不良后果:
如果水分过高,电解液和水分反应,生成微量有害气体,对注液房环境有不良影响;这也会影响电解液本身的质量,使得电池性能不良,还会使电池柳钉生锈。
水分和电解液中的一种成分反应,生成有害气体,当水分足够多时电池内部的压力就变大,从而引起电池受力变形。如果是手机电池,就表现为鼓壳;当内部压力在高的时候,电池就有危险了,爆裂使得电解液喷溅,电池碎片也很容易伤人。
电池内部水分过高;损耗了电解液的有效成分,也损耗了锂离子,使得锂离子在电池负极片发生不可逆转的化学反应。消耗了锂离子,电池的能量就减少了。
用26650电池给电钻供电,充满电后本来可以使用1小时,因为电池内部有水分,就只能使用50分钟了。
当电池内部的水分多的时候,电池内部的电解液和水反应,其产物将是气体和氢氟酸(氢氟酸是一种腐蚀性很强的酸,它可以使电池内部的金属零件腐蚀,进而使电池最终漏液。如果电池漏液,电池的性能将急速下降,而且电解液还会对使用者的机器进行腐蚀,终而引起更加危险的失效。
电池中的水分来源哪里?
对于电池中的水分,它的来源就主要来之于材料,当然也涉及环境。
正极片:正极片如果使用的是纳米材料,这种纳米材料具有很强的吸水性,很容易周围的空气中吸收水分。
负极片:负极片比正极片来说,吸水性相对低一点,当然,在没有控制湿度的环境下,其从环境空气中吸水数量也是相当乐观的。
隔膜纸:隔膜纸也是一种多孔性的塑料薄膜,其吸水性也是很大的。
电解液:电解液是一种非常怕水的物质,它也是非常容易吸水,它会和水进行反应,直至所有的电解液物质反映完成,也就是说,它喝水的能力是永无止境,直到自己死掉。
其他金属零件:
虽然金属零件本身对水分的吸收有限,但是,金属零件对水分却很怕,因为水分的存在会使其生锈或者腐蚀。
材料中的水分含量是电池中水分的主要来源,当然,环境湿度越大,电池材料越容易吸收水分。
德耐隆Telite®防水吸音隔材料,亦称之为固态密封垫片、固态垫片。它是一种呈固态状的新型高分子疏水憎油 (憎水率99%)密封材料。广州市绿原环保材料有限公司的德耐隆Telite®防水吸音隔材料与液体密封腻子有所不同,液态密封胶需要给一定的外界紧固力,才能发挥其密封作用,因此有人称它为"液体垫片"。它与固体垫片,如橡胶、石棉、金属、纸质等材料做成的垫片不同,它具有不易燃且憎水性好,因此不存在固体垫片起密封作用时必然产生的压缩变形,因而也没有内应力、松弛、蠕变和弹性疲劳破坏等导致泄漏的因素。由于它可以充满结合面之间的凹陷和缝隙,消除界面泄漏,因而是一种较理想的疏水型保温隔热、降噪材料。