新闻资讯
通过科学和创新,我们帮助各行各业的客户满足当今和未来社会发展的需求。
如果热失控无法避免 能否为电池安全装上刹车?
本站 2020-08-12 次浏览
热失控是锂离子电池使用中最为严重的安全事故,热失控往往是由于锂离子电池在发生了挤压变形、穿刺或者高温炙烤等导致隔膜被破坏引发正负极短路,或者由于电池外部短路,导致锂离子电池内部短时间内积累了大量热量,引发正负极活性物质和电解液等发生分解,导致锂离子电池起火和爆炸,严重威胁使用者的生命和财产安全。因此在锂离子电池安全测试中一般都会要求锂离子电池通过过充、过放、短路和挤压、针刺等实验,但是随着动力电池能量密度和电池容量的不断提升,电池通过针刺实验变得越来越困难,因此在工信部发布的《电动汽车用锂离子动力蓄电池安全要求》中规定针刺实验暂不执行。但是新版的要求只是对针刺实验暂不执行,后续是否会恢复还未可知,如果厂家实现了大容量、高能量密度的动力电池顺利通过针刺实验,那么必将在竞争中取得显著的优势。今天我们就来谈一谈那些给锂离子电池热失控装上“刹车”的技术。
对于电动汽车起火现象,北京理工大学熊瑞教授表示,从2019年的数据来看,有41%的自燃现象都是在停车过程中发生的。有4大故障原因会导致电池热失控,包括内部短路、外部短路、过充和过放。根据研究数据,有56%的事故是因为电池的内部短路而导致的,有16%是由外部短路导致的,18%是由过充导致的,从已经通报的事故中,没有事故是因为过放导致的。
对于电池起火的原因热失控,武汉大学艾新平教授作了非常详细的描述:当电池在短路、过充或者是受到高温冲击的时候,电池的温度就会升高。温度升高以后,会相继引发一系列放热副反应,这些副反应放出来的热不能及时疏散,会引起电池温度升高,通过正反馈机制,导致最后放热反应越来越剧烈,发生热失控。
对于热失控,中国汽车技术研究中心有限公司动力电池首席专家王芳认为,在目前的技术条件下,单体电池热失控是不可避免的。所以在电池安全防护方面,要有及时的监控,就是热失控监控的信号。王芳表示,我们当然希望电池不会失控,也不会有整体的扩散。但是如果一旦扩散,要做到给人员足够的逃生时间。

动力电池在使用中往往都是由数十只、数百只甚至是数千只电池通过串并联组成,例如特斯拉的Model S的电池组中就由多达7000只以上的18650组成,如果其中的一只电池发生热失控,就可能会在电池组内蔓延,引起严重的后果。例如,2013年1月发生在美国波士顿的一架日本航空公司的波音787客机锂离子电池起火事件,根据美国国家运输安全委员会的调查,就是由于电池组中的一只75Ah方形锂离子电池发生热失控后引发了相邻的电池热失控,这次事件后波音公司要求在所有的电池组上都要增加防止热失控扩散的措施。
为了避免热失控在锂离子电池内部蔓延,广州市绿原环保材料有限公司开发了一款基于相变材料的锂离子电池热失控隔离材料德耐隆Telite®产品系列KW-PP。德耐隆Telite®KW-PP填充在单体锂离子电池之间,在锂离子电池组正常工作的情况下,电池组产生的热量可以通过德耐隆Telite®KW-PP材料快速传递到电池组外,在锂离子电池发生热失控时,德耐隆Telite®KW-PP材料可以通过其内部的石蜡材料熔化吸收大量的热量,阻止电池温度进一步上升,从而避免热失控在电池组内部扩散。在针刺实验中,一个由18650电池组成的4并10串的电池组,没有使用德耐隆Telite®KW-PP材料时,一只电池热失控最终引发了电池组中20只电池发生热失控,而采用德耐隆Telite®KW-PP材料的电池组中,一只电池热失控并未引发其他电池组热失控。
从汽车端的角度来看,第一汽车集团新能源开发院院长王德平表示,动力电池安全事故发生,主要由于几个方面失效,即电芯的失效、BMS的失效、绝缘系统的失效、机械与密封的失效以及连接的失效。王德平谈到,一汽集团从整体对电池系统做了安全设计。从而构建起四重的安全防护体系,包括电池的安全、整车的安全、充电的安全、使用的安全,包含54项具体的安全防护措施,确保整个动力电池系统在生命周期的安全。

多重考虑
外部的温度对电池包内部的影响也是不能忽视的!为了减少换热器重量及成本, 换热器对材料减薄有持续的需求,然而这对于换热器的可靠性甚至换热性能都会带来新的挑战,未来也将通过材料优化解决。
德耐隆Telite®产品系列KW-PP采用独创新材料工艺帮助新能源电动汽车及传统汽车(锂电池)铅酸电池有效抵御发动机舱及户外高低温的影响,为电池提供安全合理的工作环境,从而保持电池的温度一致性,保持电池组的性能使用寿命。

动力电池包专用材料德耐隆Telite®的关键技术包括导热、隔热、保温,低应力缓释技术,新型阻燃技术三大技术,在协助动力电池进行热管理、降低温差、实现热平衡;撞击、跌落、爆炸瞬间完成冲击力缓释;实现在高温、过充、刺穿防爆中的阻燃隔热效果等方面将取得决定性的作用。
下面这些特性使德耐隆Telite®保温隔热材料在各种电子设备和汽车应用中脱颖而出,并有助于您应对未来大容量锂电池系统和其他电动汽车部件的设计和生产的相关挑战:
•热阻极低GB/T 10295-2008 0.155[m².K]/W
•优异的热稳定性(-185℃至200℃)
•严酷条件下的可靠性能——耐热冲击、抗氧化、抗潮湿和耐化学品性
•优异的电绝缘性(介电强度)
•隔热保温(导热系数仅为0.03W/m.k)