新闻资讯

通过科学和创新,我们帮助各行各业的客户满足当今和未来社会发展的需求。

从“材料”到“电池组”:一文读懂动力电池生产全流程(下篇)

   次浏览   新能源Leader   2019-08-22

1.单体电池生产

在电极烘干过程后,我们就进入到了锂离子电池生产的下一个环节——单体电池的生产。为了防止烘干后的电极再次吸收水分,整个单体电池生产环节都需要在干燥间内进行,环境露点一般控制在-40℃到-60℃。方形动力电池电芯的生产工艺主要有三大类,一种是卷绕工艺,这种工艺一般应用在圆柱形电池的生产上,目前也应用在方形电池的生产工艺上,这种工艺的主要优势是生产效率高,可以实现连续生产,缺点也很明显,由于电芯边缘处弯曲角度比较大,因此容易发生电极破碎,产生褶皱,引起缺陷的产生,特别是在厚电极的情况下,这一问题将变的更加严重;第二种是叠片工艺,叠片工艺是一种比较理想的工艺,正负极极片首先会进行冲切,获得特定形状的极片,然后选择正极或者负极极片用隔膜制成封装袋进行保护,然后手工或者叠片机进行叠片,这种工艺的优势是不会引起极片形变,可以采用更厚的电极,但是由于叠片过程是一个非连续的过程,因此叠片工艺的生产效率比较低,采用这种工艺的厂家比较少;第三种是Z型叠片工艺,这种工艺采用连续隔膜,将冲切好的正负极极片放置在隔膜中间,这种工艺在保留了叠片工艺的优势的基础上,也加速了生产过程,提高了生产效率,目前也有比较多的应用。

从“材料”到“电池组”:一文读懂动力电池生产全流程(下篇)

生产好的电芯首先要焊接极耳,极耳焊接方式主要是采用超声焊接工艺,采用卷绕工艺生产的电芯,受到电芯结构的限制单个电芯无法做的很厚,因此通常会将2-4个电芯并联焊接极耳,组成一个大电芯,叠片工艺生产的电池结构上没有限制,因此一般都是单个电芯焊接极耳。下一步就到了入壳工序,焊接好极耳的电芯外表裹上保护膜后,装入到电池外壳之中,入壳后需要把极耳与电池壳的盖子上的正负极极柱采用超声焊、铆接等工艺连接在一起,然后将电池的上盖和外壳通过激光焊接在一起。

这里我们需要单独谈谈方形电池的上盖,这也是方形电池壳技术含量最高、结构最复杂的地方,这是因为我们不但要保证正、负极极柱之间,以及和电池壳体之间的绝缘,还要保证良好的密封性,避免环境中的水分进入到电池壳体内部,目前最为常见的密封方式为压缩密封,也就是在电极极柱和壳体之间采用塑料件绝缘,并通过压缩塑料件的方式实现电池结构的密封。虽然这一方法简单有效,但是塑料件在长期形变的过程中会发生老化,导致密封可靠性下降,因此也有一些厂家,例如比亚迪开发了Al2O3陶瓷密封工艺,避免了塑料件老化的问题,据称能够保证电池30年以上的密封可靠性,这对于动力电池的梯次利用具有重要的意义。

在完成焊接后,通常还需要进行检漏,并将其中漏率不合格的电池剔除,常见的检漏方法包括直压、倍压和差压等方法,良好的密封性是保证锂离子电池性能长期稳定可靠的关键,因此电池检漏也是方形动力电池生产中必不可少的一个环节。

经过检漏筛选的电池接下来就到了非常重要的注液工序,由于锂离子电池的电解液对水分十分敏感,因此注液过程必须在干燥间内部进行,为了改善电解液的浸润效果,通常需要进行真空注液,也就是首先将电池内部的空气排尽,然后注入电解液,并反复几次,使得电解液在电芯内充分浸润,随后进行封口,并将电池放置在高温环境下以促进电解液的浸润。

从“材料”到“电池组”:一文读懂动力电池生产全流程(下篇)

电解液充分浸润的电池随后进入到了化成工序,化成主要是通过对电池进行小电流的充放电,对电池进行活化,在首次充电的过程中正极的电势会不断升高,而负极的电势会不断的下降,一般负极电势下降到1V左右时,电解液中的EC组分和其他成膜添加剂,如VC、FEC等就会在负极表面发生分解形成SEI膜,并伴随产气,SEI膜的形成能够阻止负极进一步与电解液发生反应,因此好的SEI膜对于提升锂离子电池的循环性能至关重要,目前通常会通过特殊的成膜添加剂和高温化成等工艺,改善负极SEI膜的质量。此外,由于电解液分解过程中通常会发生产气的问题,产生的气体可能会积累在电芯内,导致电解液浸润不充分,因此有的厂家为了将化成过程中的产气排出,也会将电池封口安排在化成之后。

化成后的电池还需要进行老化,所谓的老化就是将满电态的电池在一定的温度下进行搁置,搁置过程中由于锂离子电池内部的一些副反应,会导致电池的外电压和内阻的变化,通过对电池组的电压、内阻和容量等指标进行监控,能够剔除掉那些自放电不合格和内阻不合格的电池,以提高单体电池的一致性,同时老化结果也是后续的电池组匹配的重要参考依据,为了加速电池老化的速度,提高生产效率,厂家通常会在高温(50-60℃)下进行老化,以缩短电池老化时间。

2.  电池模块和电池组的组装

单体电池完成老化后就进入到模块组合的阶段,在组合之前要首先进行筛选,也就是测试单体电池的容量、动态内阻和电压等数据,尽量选择各个参数一致的电池进行匹配。一个大的电池组通常会由多个电池模块组成,每个电池模块则由多只单体电池通过串联和并联的方式组合而成,串联能够提升电池模块的电压,并联能够提升电池模块的容量,在为电池模块进行单体电池匹配时遵循的原则一般是串联优先考虑容量,避免电池组在充放电过程中容量较低的模块发生过充或者过放。并联则优先考虑内阻,避免在大电流充放电的过程中因为电流分布不均造成的内阻较小的电池发生过充或者过放。

在完成了单体电池的匹配后,就进入到了电池模块的组合工序,这一工序通常是将匹配好的单体电池固定到电池组的模块结构件之中,然后利用汇流排将单体电池的电极极柱连接在一起。虽然电池组中的单体电池都经过了精心的匹配,单体电池的容量和内阻的一致性都非常好,但是在循环的过程由于单体电池衰降速度的不一致,也会导致电池组内单体电池出现电压偏差,为了减少电池组内单体电池不一致性的问题,通常我们还会在电池组内加入均衡器,在电池组内部分单体的电压偏差达到一定程度时,我们会启动均衡器让电池组内的单体电池恢复一致。均衡器按照工作原理一般可以分为耗散型均衡和非耗散型均衡,耗散型均衡结构最简单,就是直接将电池组中电压较高的电池放电,电能转化为热量耗散到环境之中;非耗散型均衡则比较复杂,电压较高的单体电池电量会通过均衡器给电压较低的电池充电,从而实现单体电池之间电压的均衡。

电池组的温度管理也是不容忽视的一部分,温度是影响锂离子电池性能的一个关键因素,特别是在电池组内电池众多的情况下,在充放电发热的影响下,很容易导致电池组内温度分布不均匀,影响电池组的电性能和可靠性,有研究表明电池组内的最大温差从4.62℃,下降到2.5℃就能够将电池组的可靠性从0.0635提高到0.9328(循环200次,无BMS和均衡系统管理),因此电池组内部需要配套良好的加热和散热装置。加热比较简单,通常通过加热带的方式进行升温,近年来也有学者提出了一些电池内部加热的方式快速提升电池温度的方法,散热主要有风冷散热(强制和非强制方式),以及散热效果更好的水冷散热等方式进行。

从“材料”到“电池组”:一文读懂动力电池生产全流程(下篇)

根据用户的需求,一个动力电池组通常由数个电池模块组成,这些模块通过串联或者并联的方式连接在一起对外供电,满足不同使用场景的需求。

此外,我们还需要为电池组安装管理系统,也就是我们通常所说的BMS,BMS的主要功能是控制电池组的充放电,防止电池发生过充或者过放等问题,此外还需要管理电池组的均衡系统和热管理系统,提升电池组的性能和寿命。为了提升动力电池组的安全性,我们还会在电池组内加入一些热失控预警和阻断装置,以减少电池组热失控造成的危害。

动力电池组从“材料”到“电池组”,普普通通的材料经过锂电人灵巧的双手,经过华丽的转变成为驱动美好新生活的动力来源,可以说每一辆电动汽车、每一颗电芯都凝结着锂电人的心血。

从“材料”到“电池组”:一文读懂动力电池生产全流程(下篇)

版权与免责声明 广州市绿原环保材料有限公司声明:本站内容及图片均由系统采集于网络,涉及的言论、版权与本站无关。如发现内容或图片存在版权问题,烦请提供相关信息发邮件至yeah_w@qq.com,我们将及时沟通与处理。
Top